Jianqiang Cheng
Professor of Systems and Industrial Engineering
Member of the Graduate Faculty

Engineering 123
Dr. Jianqiang Cheng is a professor in the Department of Systems and Industrial Engineering at the University of Arizona (UA), Tucson, Arizona. He completed his PhD in 2013 at the PARIS-SACLAY University. He received his BS degree in mathematics and applied mathematics in Shanghai University. He is particularly interested in stochastic programming, robust optimization, semi-definite programming, as well as their applications. Before joining UA, he worked at Sandia National Laboratories as a postdoctoral researcher.
Degrees
- PhD Computer Science
- PARIS-SACLAY University, Paris, France
- BS Mathematics and Applied Mathematics
- Shanghai University, Shanghai, Shanghai, China
Interests
Research
Stochastic programming; Robust optimization;Distributionally robust optimization; Semidefinite and copositive optimization; Energy management
Selected Publications
Chapters
- Fathabad, A. M., Cheng, J., & Pan, K. (2021). Integrated power transmission and distribution systems. In Renewable-Energy-Driven Future(pp 169--199). Academic Press.
- Fathabad, A. M., Cheng, J., & Pan, K. (2020). Integrated power transmission and distribution systems. In Renewable-Energy-Driven Future: Technologies, Applications, Sustainability, and Policies. doi:10.1016/b978-0-12-820539-6.00005-4
- Cheng, J., Lisser, A., & Xu, C. (2015). Stochastic Semidefinite Optimization Using Sampling Methods. In International Conference on Operations Research and Enterprise Systems (ICORES). doi:10.1007/978-3-319-27680-9_6
- Cheng, J., Lisser, A., & Gicquel, C. (2012). A Second-Order Cone Programming Approximation to Joint Chance-Constrained Linear Programs. In International Symposium on Combinatorial Optimization. doi:10.1007/978-3-642-32147-4_8
Journals/Publications
- Cheng, J., Jiang, S., Pan, K., Qiu, F., & Yang, B. (2022). Data-Driven Chance-Constrained Planning for Distributed Generation: A Partial Sampling Approach. IEEE Transactions on Power Systems, 1-16. doi:10.1109/tpwrs.2022.3230676
- Cheng, J., Kosuch, S., & Lisser, A. (2022). Restricted Shortest Path Problems with Uncertain Delays.
- Cheramin, M., Cheng, J., Pan, K., & Jiang, R. (2022). Computationally Efficient Approximations for Distributionally Robust Optimization Under Moment and Wasserstein Ambiguity. INFORMS journal on computing, 34(3), 1768-1794. doi:10.1287/ijoc.2021.1123
- Fathabad, A. M., Cheng, J., Yang, B., & Pan, K. (2022). Asymptotically Tight Conic Approximations for Chance-Constrained AC Optimal Power Flow. European Journal of Operational Research. doi:10.1016/j.ejor.2022.06.020
- Lisser, A., Cheng, J., & Houda, M. (2022). Elliptically distributed joint probabilistic constraints.
- Cheng, J., Jin, H., Paul, S. K., Saha, A. K., & Cheramin, M. (2021). Resilient NdFeB magnet recycling under the impacts of COVID-19 pandemic: Stochastic programming and Benders decomposition. Transportation Research Part E-logistics and Transportation Review. doi:10.1016/j.tre.2021.102505
- Cheramin, M., Chen, R. L., Cheng, J., & Pinar, A. (2021). Data-Driven Robust Optimization Using Scenario-Induced Uncertainty Sets. arXiv preprint arXiv:2107.04977.
- Cheramin, M., Cheng, J., Jiang, R., & Pan, K. (2021). Computationally Efficient Approximations for Distributionally Robust Optimization under Moment and Wasserstein Ambiguity. INFORMS Journal on Computing.
- Cheramin, M., Saha, A. K., Cheng, J., Paul, S. K., & Jin, H. (2021). Resilient NdFeB magnet recycling under the impacts of COVID-19 pandemic: Stochastic programming and Benders decomposition. Transportation Research Part E: Logistics and Transportation Review, 155, 102505.
- Dashti, H., Cheng, J., & Krokhmal, P. (2021). Chance-constrained optimization-based solar microgrid design and dispatch for radial distribution networks. Energy Systems, 1--23.
- Karimi, R., Cheng, J., & Lejeune, M. A. (2021). A Framework for Solving Chance-Constrained Linear Matrix Inequality Programs. INFORMS Journal on Computing, 33(3), 1015--1036.
- Karimi, R., Cheng, J., & Lejeune, M. A. (2021). A Framework for Solving Chance-Constrained Linear Matrix Inequality Programs. INFORMS journal on computing, 33(3), 1015-1036. doi:10.1287/ijoc.2020.0982
- Cheramin, M., Cheng, J., Jiang, R., & Pan, K. (2020). Computationally Efficient Approximations for Distributionally Robust Optimization. Optimization online.
- Fathabad, A. M., Cheng, J., Pan, K., & Qiu, F. (2020). Data-driven planning for renewable distributed generation integration. IEEE Transactions on Power Systems, 35(6), 4357--4368.
- Fathabad, A. M., Cheng, J., Qiu, F., & Pan, K. (2020). Data-Driven Planning for Renewable Distributed Generation Integration. IEEE Transactions on Power Systems. doi:10.1109/tpwrs.2020.3001235
Proceedings Publications
- Cheng, J., Cheng, J., Wang, H., Wang, H., Wang, F., Wang, F., Gao, F., & Gao, F. (2022). Submodule Capacitor Sizing for Cascaded H-Bridge STATCOM with Sum of Squares Formulation. In International Power Electronics Conference.
- Cheng, J., & Gicquel, C. (2018). Partial Sample Average Approximation Approach for Stochastic Lot-Sizing Problems. In 2018 IISE Annual Conference.
- Dabiri, A., Cheng, J., Butcher, E. A., & Karimi, R. (2018). Probabilistic-Robust Optimal Control for Uncertain Linear Time-delay Systems by State Feedback Controllers with Memory. In Annual American Control Conference (ACC).
- Karimi, R., Dabiri, A., Cheng, J., & Butcher, E. A. (2018). Probabilistic-Robust Optimal Control for Uncertain Linear Time-delay Systems by State Feedback Controllers with Memory. In 2018 Annual American Control Conference (ACC).
- Cheng, J., Lisser, A., & Xu, C. (2015). A Sampling Method to Chance-constrained Semidefinite Optimization. In International Conference on Operations Research and Enterprise Systems (ICORES).
- Xu, C., Cheng, J., & Lisser, A. (2015). A Sampling Method to Chance-constrained Semidefinite Optimization. In Proceedings of the International Conference on Operations Research and Enterprise Systems, 75-81.
- Xu, C., Cheng, J., & Lisser, A. (2015). A Sampling Method to Chance-constrained Semidefinite Optimization. In Proceedings of the International Conference on Operations Research and Enterprise Systems.
- Xu, C., Cheng, J., & Lisser, A. (2015). Stochastic Semidefinite Optimization Using Sampling Methods. In International Conference on Operations Research and Enterprise Systems, 93-103.
- Xu, C., Cheng, J., & Lisser, A. (2015). Stochastic Semidefinite Optimization Using Sampling Methods. In International Conference on Operations Research and Enterprise Systems.
- Cheng, J., Gicquel, C., & Lisser, A. (2014). A modified sample approximation method for chance constrained problems. In SIAM Conference on optimization 2014.
- Cheng, J., Lisser, A., & Gicquel, C. (2014). A modified sample approximation approach for chance-constrained problems. In PGMO-COPI'14; Conference on Optimization and Practices in Industry.
- Cheng, J., Lisser, A., & Gicquel, C. (2014). A modified sample approximation method for chance constrained problems. In International Conference on Operations Research and Enterprise Systems (ICORES).
- Cheng, J., Lisser, A., Letournel, M., Soto, I., Adasme, P., & Nuñez, B. (2014). A chance constrained approach for uplink wireless OFDMA networks. In 9th International Symposium on Communication Systems, Networks & Digital Sign (CSNDSP).
- Gicquel, C., Cheng, J., & Lisser, A. (2014). A joint chance-constraint programming approach for a stochastic lot-sizing problem. In Proceedings International Workshop on Lot-sizing, IWLS, Porto, Portuga.
- Gicquel, C., Cheng, J., Gicquel, C., & Cheng, J. (2014). Solving a stochastic lot-sizing problem with a modified sample approximation approach.. In 44th International Conference on Computers and Industrial Engineering.
Others
- Safta, C., Cheng, J., Chen, R. L., Pinar, A., Najm, H. N., & Watson, J. (2022). Surrogate-based model for optimization under uncertainty..
- Fathabad, A. M., Cheng, J., Pan, K., & Yang, B. (2021). Tight Conic Approximations for Chance-Constrained AC Optimal Power Flow.
- Cheng, J. (2013). Stochastic Combinatorial Optimization.
Awards
- Best Short Paper Award
- INFORMS Workshop on Data Science, Fall 2022
- NSF CAREER Award
- National Science Foundation, Spring 2022
- Science Foundation Arizona's 2017 Bisgrove scholar
- Science Foundation Arizona (SFAz), Spring 2017