SIE 321 Probabilistic Models in Operations Research

Fall 2021

Class meeting times & location:
TBA (Microcampus)

Instructor of Record: Prof. Pavlo A. Krokhmal
Office: ENGR 223
Tel: (520) 621-2605
E-mail: krokhmal@arizona.edu
Office hours: MWF 2:00pm – 3:00pm, or by appointment

Global Instructor: Mg. Pablo Francisco Mendoza Vargas
Office: Remote
E-mail: pablomendoza@arizona.edu
Office hours: MF 2:00pm – 4:00pm, or by appointment

Course Description: The course covers fundamental probabilistic models and applications of operations research, which describe industrial systems and processes involving uncertain or random information or data.

Textbook: No textbook is required for this course; the following texts can be used as reference:

Prerequisites: SIE 305 Introduction to Engineering Probability and Statistics; a working knowledge of calculus and linear algebra.

Course objectives:
- To develop a basic familiarity with stochastic process models
- To develop the ability to analyze stochastic systems
- To apply probabilistic models in engineering, finance, public policy, etc.

Course topics:
- Review of probability
- Probabilistic decision analysis (decision criteria, utility theory, decision trees)
- Stochastic processes and Markov chains (modeling, transition probabilities, long-term properties)
- Queueing theory (birth-and-death processes, Little’s law, M/M/s/K/N queueing models, queueing models with non-exponential distributions)
- Deterministic and stochastic inventory models (EOQ models, elements of supply chains, stochastic inventory models for perishable products)

Computer Support: PC with internet access. All class materials, including lecture notes, assignments, etc., will be distributed via course’s D2L website (https://d2l.arizona.edu). Class announcements will also be posted on D2L and/or distributed via D2L email classlist.

Assignments: Knowledge checks (5%), Homework (30%), Quizzes (15%), Midterm Exam (25%), Final Exam (25%).
Homework will be given weekly. Discussion is allowed but individual submission is required. Homework assignments will be posted on the course’s D2L website (https://d2l.arizona.edu), usually about one week before the due date. Homework assignments must be turned in at the beginning of the class on the day they are due.

Quizzes will be given in class with prior announcement, and will cover the most recent material. Quizzes’ policy is closed-book, open-notes. **No make up quizzes will be given.** If you were unable to take a quiz for a valid reason, the corresponding grade will be omitted from the final grade calculation. If you expect to miss a quiz for a valid reason, inform the instructor and TAs by email and provide supporting documentation. The lowest quiz grade will be dropped.

The midterm and final exams will test your overall understanding of the concepts and material covered in lectures and in homework. The exams’ policy is closed-book and closed-notes, but you are allowed to bring one letter-sized “cheat sheet”. Only engineering calculators are allowed on exams and quizzes; no laptops, smartphones, or tablets.

Grading:
- A: 90.00 – 100.00
- B: 80.00 – 89.99
- C: 70.00 – 79.99
- D: 60.00 – 69.99
- F: 0 – 59.99

Late Assignments: No credit will be given to assignments submitted late.

Attendance Policy: Students are expected to attend class. If you miss class you are responsible for obtaining the class notes, assignments, and announcements. Phone usage is not allowed during the class; please put your phone into “quiet”, or “vibrate” mode prior to start of the class.

Accommodation for Students with Special Needs: Students with disabilities or special needs for accommodations (including in class meetings and exams) are required to contact both the instructor and the S.A.L.T. Center (www.salt.arizona.edu) or the Disability Resource Center (http://drc.arizona.edu) as early as possible in the semester. They are also required to submit appropriate documentations to the instructor before accommodations could be offered.

Academic honesty: All students are expected to commit themselves to be honest in all academic work and understand that failure to comply with this commitment will result in disciplinary action. This is a reminder to uphold your obligation as a UA student and to be honest in all work submitted and exams taken in this course and all others.

This syllabus is tentative and the instructor reserves the right to make modifications if appropriate.