Design systems for autonomous surveillance and natural disaster response, cyberinfrastructure for space traffic, and technology for connected vehicles.

Research Focus Areas
- Data analytics, informatics & machine learning
- Energy, water, environment & sustainability
- Health care systems
- Human factors & sociotechnical systems
- Optimization
- Smart transportation & manufacturing logistics
- Space, defense & security

Program Highlights
- Highly ranked programs
- 10 distinct graduate tracks
- Online MS and graduate certificates
- Flexible interdisciplinary curriculum
- High-profile research and valuable internships
- Hispanic-serving Institution

Degrees
- PhD Systems & Industrial Engineering
- PhD Software Engineering
- MS Engineering Management (online options)
- MS Industrial Engineering (online options)
- MS Systems Engineering (online options)
- MS Software Engineering (online options)

Certificates (online options)
- Engineering Management
- Quality & Reliability Engineering
- Systems Engineering

Top 25
Industrial/systems/manufacturing grad programs (U.S. News & World Report 2022)

Nation’s First
Academic systems engineering program

Funding Options Throughout Degree Lifecycle, Including:
- Four-year SIE scholarship
- Research/teaching assistantships
- Fellowship awards

Application Deadlines
- MS & Graduate Certificate
 - Fall: January 15
 - Spring: June 1
- Doctoral Program
 - Fall: December 1

Contacts

Systems & Industrial Engineering and Engineering Management Graduate Programs
Cindy Nguyen, SIE Graduate Coordinator, Sr.
graduateadvisor@sie.arizona.edu

Software Engineering Graduate Programs
Liza Soto, Software Engineering Graduate Coordinator, Sr.
sfe-grad@engr.arizona.edu

"The opportunity to work on a NASA-funded mission while obtaining a graduate degree seemed too good to be true. I am part of a mission that will directly enhance our knowledge of the solar system – all while still being in school."

- Kristofer Drozd, PhD student
With industrial engineering, the beauty is that you can expand to almost all engineering areas, and it encourages collaboration. It can be applied to a variety of other disciplines.

- Hongyue Jin, assistant professor

Faculty Expertise

Hannah Budinoff – hdb@arizona.edu
design for manufacturing, additive manufacturing, engineering design and design methodology, engineering education, sustainable manufacturing

Tomas Cerny – tcerny@arizona.edu
software architecture, cloud native systems, code analysis, software design, technical debt, system evolution

Jianqiang Cheng – jqcheng@arizona.edu
stochastic programming, robust and distributionally robust optimization, semidefinite and copositive optimization, network design and energy management

Neng Fan – nfan@arizona.edu
integer programming and combinatorial optimization, stochastic programming and robust optimization, energy and water systems modeling and optimization, data mining and health care management

Roberto Furfaro – robertof@arizona.edu
intelligent systems for space exploration, space systems engineering, guidance navigation and control of space systems, radiative transfer numerical modeling, inverse problems in remote sensing

Erfan Yazdandoost Hamedani – erfany@arizona.edu
Large-scale optimization, distributed optimization, bilevel optimization, saddle point problems, machine learning, dynamical systems

Sen He – senhe@arizona.edu
cloud computing, Edge, software and performance engineering, applied artificial intelligence, computer vision

Larry Head – lkhead@arizona.edu
traffic signal systems, urban traffic operations, transportation modeling, connected vehicles, autonomous vehicles, intelligent transportation systems

Afrooz Jalilzadeh – afrooz@arizona.edu
stochastic optimization, variational inequalities and Nash games, risk averse optimization, machine learning, healthcare optimization

Hongyue Jin – hjin@arizona.edu
techno-economic analysis, life cycle assessment, optimization for sustainability

Sherilyn Keaton – keatons@arizona.edu
software engineering, object-oriented modeling

Pavlo Krokhamal – krokhamal@arizona.edu
stochastic optimization, decision making under uncertainty, risk analysis, financial engineering, optimal trading strategies, multidisciplinary optimization, cooperative control and decision making

Michael Kwinn – kwinm@arizona.edu
Systems thinking, systems decision making, decision analysis, systems design, resource management, planning

Wei Hua Lin – whlin@arizona.edu
traffic flow modeling, information technologies in transportation, transportation data analysis, transportation network, analysis and modeling, freeway incident management

Jian Liu – jianliu@arizona.edu
multivariate statistics, statistical process control, quality and reliability engineering, statistical pattern recognition and feature extraction for process monitoring, diagnosis and control

Alejandro Salado – alejandro@arizona.edu
problem definition, model-based systems engineering, art of systems engineering, theory of systems engineering, design of verification strategies, systems engineering education, decision analysis

Pratik Satam – pratiks@arizona.edu
internet of things, smart manufacturing, and software security

Mohammed Shafae – mshafae@arizona.edu
cyberphysical systems security, smart manufacturing systems, statistical process monitoring, manufacturing process data analytics, advanced metrology systems, data-driven quality control

Vignesh Subbian – vsubbian@arizona.edu
medical informatics, health care systems engineering, computing applications for critical care medicine, traumatic brain injury, STEM integration, engineering ethics

Ricardo Valerdi – rvalerdi@arizona.edu
cost modeling, software cost estimation, harmonization of systems and software engineering, acquisition policy, process improvement methods, human systems integration, professionalization of systems engineering

Yue Wang – ywang@arizona.edu
Inventory management, transportation and logistics, supply chain optimization
